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NOTE

Comparison of Phase-Shift Calculations by Asymptotic Fit and
Quadrature in Ultra-Low Temperature Scattering

Elastic scattering of atoms at ultra-low temperatures is domi-
nated by s-wave or zero angular momentum scattering. Further-
more, at a low energy, F, of relative motion the phase-shifi is
Mt b1 where My is the nimber of bound states and 5 is
approximately —ka, where & is the wave number (given by
(/D) V2l where g is the reduced mass and # s the rational-
ized Planck’s constant) and « is the scattering length; 7 is very
small at an ultra-low energy. We shall refer to n itself as the
phase-shift throughout this paper. We demonsirate below that
some small phase-shifts are more accurately calculated by quad-
rature than by fitting numerical solutions of the Schrodinger
equation to their asymptotic forms.

The radial part of the Schriddinger equation in terms of the
radial coordinate or internuclear separation R is

i”‘ [E = VIR)W(R) = y"(R) + QUR)IWR)

YR+

(N
= y"(R) + KXR)y(R) = 0,

where y(R) is R times the radial s-wave function, V(R) is the
interaction potential (vanishing asymptotically at large R), and
Eq. (1) also defines the function Q(R) and the focal wave
number K(R): K(R) coincides with &k asympltotically and is
imaginary in the non-classical region. The boundary condi-
hions are

vy =0 (2)
and for large R
¥R} — A sin(kR + m). (3)

In atomic scatlering the potential is often taken as a hard core
at small internuclear separation inside which the wave-function
vanishes; we replace the origin in Eq. (2) by Ry, the starting
point for numerical integration.

Equation (1) can be solved numerically by Numerov's
method [1] in which the solution is generated as a table of

values Y;, approximating y;. by the propagator
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the subscripts indicating functions evaluated at R; = R, + ih,
where /1 is the step-length. Subtraction of i? times Eq. (1),
*/12 times its second derivative, and h%/ 144 times its fourth
derivative from Eq. (4), all at R;, leaves a local truncation error
—Nty240 on the left-hand side. We may write

Y, =y + by, {3)

where dy; is the global truncation error. We can consider 8y,
to be the value at R; of a continuous error §y(R) [2] introduced
by addition of the perturbation (A%/2u)(h*/240)(d*/dR®) to the
potential operator when Eq. (1) is solved by Numerov’s method
[3]; its feading term is G(/*) satisfying the differential equation,
derived from Eqgs. (1) and (4} [2],

4

N
SR -+ QURISVR) = ﬁy"‘”(k ). ()

The step-length should be chosen to keep the local relative
truncation error, approximately h°K%/240 at R, where K, is the
local wave number, acceptably small [4].

The phase shift can be calculated by fitting the solution y{(R)
to sin(kR) and cos(kR). the asymptotic solutions of Eq. (1). Let
§; and C; denote sin(kR;) and cos(kR)), respectively. Fitting at
R; and R; we find, for a small phase shift,

.y, — Sy
LR = — _/_u_ 7
m~tan(y) = — ™
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From Eqgs. (8) and (7) we find that the relative error, /7y, in
the phase shift caused by use of the numerical wave functions
Y:and ¥; in Eq. (7} is, to O(h"),

On_ _ Sy — 80y Cidy; — by
7 {(Cy; — Ciyam Ciyj = iy ’

{8)

The relative error introduced into a small phase shift by the
first term on the right-hand side of Eq. (8) can be large, as a
consequence of cancellation, making the evaluation of expres-
sion (7) ill-conditioned. Both terms are proportional to the
relative errors in the wave function. However, even if they are
kept small by making the local truncation errors acceptably
small (say [#K(R)|%/240 < 107* or |AK(R)! << 0.1), it is still
possible for the phase shift to have an unexpectedly large rela-
live error; a small step length might be needed to yield accept-
able accuracy. In the special case where SyJfy:, = 8yly, the
error given by Eq. (8) vanishes as expected because the relative
error, being the same at R; and R;, is absorbed into the normal-
ization factor A.
The phase shift is also given by the quadrature [5]

2 =

N == sin{n) = — ~——

57 |, SMERIVIRY(RMR.  (9)

The normalization constant, A, obtained by fitting to the asymp-
totic expression (3) is

— }’:'2 + )"12 - 2)’;)’;' cos[k(R; — Rj)]

2
A Sin’[k(R, - R))]

(10)

However, its relative error, JA/A, caused by use of the numeri-
cal wave-function and given by

OA _ yidy: T y;0y; — (¥;0y; + yiby;) cos[k(R; — R))]
A yE+ ¥ = 2yy; cos[k(R, — R))

. (1)

is well conditioned with respect to the errors in the wave func-
tion. The relative error, §n/7, in the phase-shift is

@:—-?é—

I =
- h kﬁ;f:n = Sin(kR)V(R) 3y (R)R,

(12)

where dy(R) satisfies Eq. (6). In the numerical example de-
scribed below quadrature yields more accurate phase-shifts than
asymptoiic fitting. Unfortunately we cannot predict this accu-
racy because while the first term of expression (12) introduces
no excessive errors the necessary analysis of the second (inte-
gral) term requires knowledge of the solution of the differential
equation (6). The potential ip our numerical example has the
form of a steep repulsive core matched to a well, which in tumn
is matched to a slowly varying asymptotic tail. The wave-
function has many oscillations in the well and the subsequent
cancellation makes meaningful estimation of the contribution
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to the integral from the well impossible without a good analytic
approximation to 8y(R). Furthermore, although we know a
particular asymptotic solution to Eq. (6), as —(A*4*/480)kR
cos(kR + =), we have insufficient knowledge of 8y(R) to match
the auxiliary solution near the well and we cannot estimate the
significant contribution of the tail to the integral. The only
possible comment is that in the quadrature the error in the
numerical wave-function is spread over the range of integration,
whereas the fitting procedure is sensitive to the errors in the
wave-function calculated at two points only.

To ensure validity of the asymptotic solutions in a calculation
of scattering data at an ultra-low energy, Eq. (1) must be
integrated out to a large internuclear separation where the as-
ymptotic potential is small compared to #%%*2u. In atomic
scattering the reduced mass is large, causing the value of the
step-length necessary for accurate integration at small in-
teratomic distances to be very much smaller than that needed
in the asymptotic region for small wave numbers. Typically
we should ensure that [#K(R)[* =~ 0.01 for a local relative
truncation error of about 107%. Ideally the algorithm should
incorporate an automatic interval adjustment which increases,
say doubles, A if [#K(R)|* becomes much less than 0.01 and
decreases, say halves, A if |hK(R)|* becomes a little greater
than 0.01; in halving an extra intermediate point is needed and
the solution at that point can be found by solving Eq. (4} once
for Y, instead of Y,,, [4]. The effect of doubling or halving is to
introduce discontinuities into the error. These are unimportant if
the error is small but provide a useful diagnostic to check if
small phase-shifts calculated by asymptotic fitting are suffi-
ciently accurate. If the step is too large the calculated phase-
shift exhibits discontinuities in both the internuclear separation
and the energy of relative motion.

We compared asymptotic fitting with quadrature evaluation
in a calculation of low energy scattering of two lithium atoms
in a potential comresponding to the X'Z; state of Li;. The
potential was constructed from ab initio values fitted t© an
exponential short-range core and a long-range dispersion form
[6]; we have presented the details elsewhere [7] in a more
extensive study of lithium scattering at low energies. We incor-
porated step adjustment. We made separate calculations at vari-
ous energies E of relative motion, in which the step was doubled
when {AK(R)[*/12 became smaller than 1072, 1073, 107, and
107¢ (division by 12 was included for computational conve-
nience). With the 107 criterion greater accuracy was obtained
but many steps were required and we took the asymptotically
fitted phase-shifts to represent the accurate values for compari-
son. With the 1072 criterion a relative local truncation error
of about 107 might be expected from fitting but, as seen
in Fig. 1, this was not achieved; furthermore, the fitted phase-
shifts are discontinuous for both the step doubling criteria
shown. The quadrature results are more accurate and have
no discantinuities; for the 107 criterion they have negligible
errors. More results of fitting and quadrature are compared
on a larger scale in Fig. 2. The fitted results again exhibit
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discontinuities. In both figures they occur at intervals of
login(4) = 0.6 apart in log energy. This happens because
as the energy is increased the number of step doublings
performed in the long asymptotic tail is decreased; at very
small energy the step doubling procedure is energy-dependent
only in the tail. The error changes discontinuously as a
function of R whenever the step is doubled. The doubling
criterion depends asymptotically on #*k? or &2E which changes
by a factor of 4 at each doubling. If we increase the energy
by a factor of 4 we expect one step doubling fewer to be
performed, leading to a discontinuity in the calculated phase-
shift, as a function of E. The intervals between the discontinu-
ities correspond to changes by factors of 4 in energy or
changes of log(4} in log energy. The quadrature is much
less sensitive to the number of step doublings because the
error is spread over the range of integration.
The Schwinger integral formula [8],

cot(n)
(%I 2 [ VR)YR)IR
o f Jo s VIRYYR)YG K, R, R)V(R)y(R)IR'dR
[f; VR)sin(kR)y(R)dR]? ’
(13)
where
Gk, R, R") = sin(kR . )cos(kR..) (14)

with R and R.. indicating the smaller and larger of R and R’,
yields a phase-shift correct to second order in the error of any
approximation which may be substituted for the wave-function
y(R). It is vsually used in variational methods, where apalytic
trial wave-functions are constructed. It should provide a very
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FIG. 1. Phase shifts, m, for different step-length doubling criteria:

a. asympiotic fit doubling h when |AK(R)[*/12 < 107%; b. guadrature doubling
h when |RK(R)|*/12 < 107%; ¢. asymptotic fit doubling h when |RK(R)|/12
<2 107% d. guadrature doubling h when JRK(R)|2/12 < 107
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FIG. 2. Phase shifts, n, for different step-length doubling criteria:
a. asymptotic fit doubling k when [RK(R)|¥12 < 107 b. quadrature doubling
hwhen |RK(R)|*/12 <107 c. quadrature doubling A when [RK(R)|?/12 < 105,

accurate phase-shift when the numerical wave-function, de-
scribed above, is substituted. However, we found that its use
is impractical in our example because the oscillation of the
wave-function in the potential well introduces severe cancella-
tion in the double integral; an extremely small step is required,
not by the method used to solve Eq. (1} but by the method
used to evaluate the double integral. The time needed for this
integration increases as the square of the total number of steps,
although symmetry does allow a cut by 2. We made one calcula-
tion at a log energy of —10.2, obtaining a phase shift of
1.076 X 107*, Substitution of a numerical wave-function in the
Schwinger formula is likely to be unsatisfactory in any low
energy atom-atom collision problem because the large reduced
mass can intreduce many oscillations in any well other than
the shallowest; it is probably worse at medium to high energies
and better for low energy electron—atom collisions.

In conclusion, we recommend that the algorithm used to solve
the Schrédinger equation in calculations of ultra-low energy scat-
tering should incorporate automatic adjustment of the step-
length [4] and that the results of asymptotic fitting and of quadra-
ture should be made and compared for various step~-doubling cri-
teria to enable reliable phase-shifts to be determined.
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